Body: high energy absorption in the event of a front impact

The extremely robust occupant compartment of the Mercedes-Benz M-Class, together with the front and rear deformation zones, forms an effective basis for the occupant protection system. The focus of the work here has been the tangible reduction of the loads exerted on the occupants. In the case of front impacts, the engineers were able to achieve more uniform deceleration, and therefore a lower peak load on the occupants. This was made possible by means of:

Design of the front axle carrier as a crash element, which is able todeform in a specific manner and in the case of an offset crash, for example, can divert the energy to the side of the vehicle opposite the side of impact
A novel aluminium gearbox crossmember mount with offset function: isolated against noise and vibration during normal operation, in the event of a crash this component is activated via hooks so that the centre tunnel can absorb additional energy in this area (diesel versions only)
Guide ramp on the brake booster, thus preventing unwanted block formation between the brake booster and the damper dome. The brake booster is also rotated to minimise possible brake pedal intrusion
A crash joint ensures that the mudguard is pushed away at the driver's door, and prevents the door from jamming after the impact. For the most part the doors can be opened without much effort
Ultra-high-strength steels in the A-pillar enhance the stability of the passenger compartment in both front impacts as well as in different rollover scenarios, primarily enabling doors to be opened easily after an offset crash
Projected sills create a direct load path to the front wheel. As a result, any possible forcing or intrusion of the wheels into the footwell can be avoided
Optimum energy conversion in the event of a front crash despite relatively short front-end length, thanks to enabling the load paths from the crashbox to the longitudinal body member, from the wheel to the sill, and due to the deformable subframe, which guides forces into the centre tunnel via the engine/transmission joint
The energy-absorbing steering column deforms up to 100 millimetres when subjected to external forces, thus freeing up additional deformation space for energy conversion. As a result, the loads on the driver can be reduced in the area of the head, neck and thorax

    See also:

    Brow of hill
    When driving up an uphill gradient, slightly reduce pressure on the accelerator immediately before reaching the brow of the hill. Use the vehicle's own impetus to drive over the top of the hill. ...

    Temperature
    WARNING The temperature grade for this tire is established for a tire that is properly inflated and not overloaded. Excessive speed, underinflation, or excessive loading, either separatel ...

    Range of the sensors
    General notes The sensors must be free of dirt, ice and slush; otherwise they may not function correctly. Clean the sensors regularly, taking care not to scratch or damage them. Side view ...